<table>
<thead>
<tr>
<th>Definition</th>
<th>Pros</th>
<th>Cons</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall-only</td>
<td>- Most commonly used measure for majors
- Utilized in prior ARPD definition (2006 - 2008)</td>
<td>- Does not address students taking program courses
- Masks the total number of major “throughput” if used in conjunction with annual jobs</td>
<td>Snapshot view of campus, likely represents the maximum number of students in the program during the academic year</td>
</tr>
<tr>
<td>Fall and spring average</td>
<td>- Utilized in current ARPD definition (2009 - present)</td>
<td>- Does not address students taking program courses
- Cannot disaggregate if desired because number is a composite
- Close to a fall-only count, understates number of students on an annual basis</td>
<td>Definition (0.5 fall majors + 0.5 spring majors = total academic year majors) is difficult for program faculty and administration to understand, its magnitude impacts greatly on program health calculations and policy implications</td>
</tr>
<tr>
<td>Fall and spring - duplicated and separated</td>
<td>- Supplements fall data with spring data, approximates persistence
- Programs with spring intake better represented</td>
<td>- Does not address students taking program courses
- Lengthens report, doesn’t contribute much to analysis.</td>
<td>Attrition between fall and spring is exaggerated without incorporating graduates/transfers, program readiness of majors</td>
</tr>
<tr>
<td>Fall and spring unduplicated</td>
<td>- Utilized in PHI report (up until 2005)
- More suitable measure for using with annual jobs in current ARPD</td>
<td>- Does not address students taking program courses
- Slightly more difficult to calculate than other potential measures</td>
<td>Those changing major are counted the same as program majors and those declaring but not program ready</td>
</tr>
<tr>
<td>Fall-only (majors in program courses)</td>
<td>- Fall “true” majors counted without need for pre-major coding
- Programs may customize courses to be included</td>
<td>- Slightly more difficult to calculate for programs with different course alphas (e.g., HSER)</td>
<td>Partially addresses limitations of major field</td>
</tr>
<tr>
<td>Fall and spring average (majors in program courses)</td>
<td>- Refinement of existing measure in ARPD</td>
<td>- Fails to address underlying weakness of using an average across academic year</td>
<td>Seems preferable to calculation without program course enrollment, but may require recalibration of ARPD program health rubric</td>
</tr>
<tr>
<td>Fall and spring - duplicated and separated (majors in program courses)</td>
<td>- "True" majors across the academic year</td>
<td>- Uncertain how spring program enrolled majors will be an analytical improvement</td>
<td>Same limitations without program course enrollment apply</td>
</tr>
<tr>
<td>Fall and spring unduplicated (majors in program courses)</td>
<td>- Best fit of the measures discussed for comparison with annual job openings</td>
<td>- Masks bottlenecks in potential majors becoming actual majors</td>
<td>Works well for specific comparison to annual job openings but suppresses information useful in other contexts</td>
</tr>
</tbody>
</table>
Additional parameters for consideration of a major definition: Freeze event (end first week, census [end 5th week], end of semester), including students who completely withdraw, separating certificate- vs. degree-seeking majors, incoming majors (all), incoming majors (enrolled in program courses), outgoing majors (newly credentialed and/or employed).

There are many possible definitions, but a single "best" measure for major (or any other data element) is context-sensitive. For comparison with annual job openings, the best measure is perhaps the fall and spring unduplicated count of majors in program courses. For a simple overview, the fall major is likely sufficient. There may be a need for several major definitions depending on the purpose. We might also utilize a set of numbers to give additional shape to what would otherwise be a stand-alone definition. As an example, here are annual unduplicated counts, with total declared majors, program majors (declared majors taking program classes), and new program majors (declared majors in a program-designated intake course). For the purposes of this discussion, the intake courses from the last Program Health Indicator (PHI) in 2005 were utilized—AMT 20 and EIMT 30. These could be changed as necessary and appropriate:

Program: Academic Year – (New program majors / All program majors / All declared majors)
AMT2 (2011-2012) 44/121/232
EIMT (2011-2012) 24/50/196

Alternatively, the numbers could be nested within rates:

Program: Academic Year – (All declared majors / New program major % / Program major %)
AMT2 (2011-2012) 232/19%/52%
EIMT (2011-2012) 196/12%/26%

There are additional possibilities with a first-year/second-year major distribution, or various combinations with degrees/certificates awarded and employment: New majors/graduates, non-program ready majors/program majors, new program majors/annual statewide job openings, etc.

Conclusions (mine, anyway):
1. It's relatively easy to develop different data measures than the ones currently utilized in the ARPD.
2. Evaluating alternatives is difficult/impossible without an understanding of how they will be used in a larger framework; no measure is intrinsically better than another.
3. If a health call rubric or sliding scale rating system is not desired, then it should be a fairly straightforward process to select ten to twelve "useful" data points. However, this selection process would be arbitrary.
4. If there is a need for a health call rubric or sliding scale rating system, it's easier to complete this first and then select data measures to inform the evaluative context. The problems with the ARPD stem more from taking the existing data points and constructing health criteria after-the-fact.
5. In order to construct a health rubric/rating system, we must answer these questions:

A. What is important to administration/individual programs in terms of performance and why?
B. Are there data points that accurately measure or approximate a program's performance?
C. How important is comparability? The ARPD's existence is predicated on the idea that data definitions and health calls are comparable between programs in all cases. But using the above example, AMT's percentage of program majors is twice as large as EIMT's. Does this difference matter? If not, how is it rationally determined within any particular major what is an acceptable range?
D. How will the quantitative and qualitative differences be reflected in the budgeting process? How will this new process make it easier to determine funding priorities between programs?

There is much to consider. We began this subcommittee, I think, with the idea that we were completely free to develop something new and not tied to anything from the PHI reports or ARPD. Not to preclude something more radical and revolutionary, I propose these as a starting point:

1. Demand
 A. AY declared majors/AY new program major%/AY Program major %
 B. AY Student Semester Hours (SSH)
 C. AY Number of classes taught

2. Efficiency
 A. Class Fill (actual enrollment vs. maximum capacity)
 B. Estimated Revenues/Costs (could estimate tuition revenue from SSH—this one’s a can of worms but seems like one of the more important statistics)
 C. Course completion rate/Successful course completion rate (“A” through “F” for course completion rate and “C” or better for successful course completion)

3. Effectiveness
 A. FTE BOR appointed faculty/Analytic FTE faculty
 B. Persistence fall-to-spring (change to fall-to-fall?)
 C. Annual unduplicated certificates and degrees awarded/AY program majors unduplicated
 D. Licensure/employment data (actual exam results and job placements)

I think it’s a nice start; it streamlines what has become 34 data points in the ARPD to 10 (well, some have multiple numbers nested in them but I like to think they’re useful). Of course there is still the problem of defining an acceptable threshold or range for each item and a health calculation for the category. Efficiency would probably be the easiest for which to construct a rubric, but what’s “good” for demand and effectiveness isn’t entirely clear.

Note that the projected jobs data aren’t included in this. My view is that we don’t include it until some of the issues surrounding the definition (source, in-state vs. out-of-state, in-county vs. out-of-county, distributing jobs among other UHCC programs, distributing jobs among other non-UH institutions, etc.) are resolved. If it can’t effectively be worked into a rubric, in my opinion we should disregard it and let the information be disseminated separately and/or discussed between programs and advisory groups.

Where do we go from here? I have more questions than answers.